Isnin, 6 Ogos 2012

COMPUTER COMPONENTS

Computers are made of the following basic components:
  1. Case with hardware inside:
  2. Power Supply - The power supply comes with the case, but this component is mentioned separately since there are various types of power supplies. The one you should get depends on the requirements of your system. This will be discussed in more detail later
  3. Hard disk drive(s) - This is where your files are permanently stored on your computer. Also,normally, your operating system is installed here.
  4.  CD-ROM drive(s) - This is normally a read only drive where files are permanently stored. There are now read/write CD-ROM drives that use special software to allow users to read from and write to these drives.
  5. Floppy drive(s) - A floppy is a small disk storage device that today typically has about 1.4 Megabytes of memory capacity.
  6. Other possible file storage devices include DVD devices, Tape backup devices, and some others.
  7. Monitor - This device which operates like a TV set lets the user see how the computer is responding to their commands.
  8. Keyboard - This is where the user enters text commands into the computer.
  9. Mouse - A point and click interface for entering commands which works well in graphical environments.
  10. Motherboard - This is where the core components of your computer reside which are listed below. Also the support cards for video, sound, networking and more are mounted into this board.
  • Microprocessor - This is the brain of your computer. It performs commands and instructions and controls the operation of the computer.
  • Memory - The RAM in your system is mounted on the motherboard. This is memory that must be powered on to retain its contents.
  • Drive controllers - The drive controllers control the interface of your system to your hard drives. The controllers let your hard drives work by controlling their operation. On most systems, they are included on the motherboard, however you may add additional controllers for faster or other types of drives.

COMPUTER OF CLASSIFICATION

 Microcomputers

Microcomputers are small, low-cost and single-user digital computer. They consist of CPU, input unit, output unit, storage unit and the software. Although microcomputers are stand-alone machines, they can be connected together to create a network of computers that can serve more than one user. IBM PC based on Pentium microprocessor and Apple Macintosh are some examples of microcomputers. Microcomputers include desktop computers, notebook computers or laptop, tablet computer, handheld computer, smart phones and netbook, as shown in Figure 1.9.


Figure 1.9. Microcomputers




Desktop Computer or Personal Computer (PC) is the most common type of microcomputer. It is a stand-alone machine that can be placed on the desk. Externally, it consists of three units—keyboard, monitor, and a system unit containing the CPU, memory, hard disk drive, etc. It is not very expensive and is suited to the needs of a single user at home, small business units, and organizations. Apple, Microsoft, HP, Dell and Lenovo are some of the PC manufacturers.

>  Notebook Computers or Laptop resemble a notebook. They are portable and have all the features of a desktop computer. The advantage of the laptop is that it is small in size (can be put inside a briefcase), can be carried anywhere, has a battery backup and has all the functionality of the desktop. Laptops can be placed on the lap while working (hence the name). Laptops are costlier than the desktop machines.

>  Netbook These are smaller notebooks optimized for low weight and low cost, and are designed for accessing web-based applications. Starting with the earliest netbook in late 2007, they have gained significant popularity now. Netbooks deliver the performance needed to enjoy popular activities like streaming videos or music, emailing, Web surfing or instant messaging. The word netbook was created as a blend of Internet and notebook.

>  Tablet Computer has features of the notebook computer but it can accept input from a stylus or a pen instead of the keyboard or mouse. It is a portable computer. Tablet computer are the new kind of PCs.

>  Handheld Computer or Personal Digital Assistant (PDA) is a small computer that can be held on the top of the palm. It is small in size. Instead of the keyboard, PDA uses a pen or a stylus for input. PDAs do not have a disk drive. They have a limited memory and are less powerful. PDAs can be connected to the Internet via a wireless connection. Casio and Apple are some of the manufacturers of PDA. Over the last few years, PDAs have merged into mobile phones to create smart phones.

>  Smart Phones are cellular phones that function both as a phone and as a small PC. They may use a stylus or a pen, or may have a small keyboard. They can be connected to the Internet wirelessly. They are used to access the electronic-mail, download music, play games, etc. Blackberry, Apple, HTC, Nokia and LG are some of the manufacturers of smart phones.

 Minicomputers

Minicomputers (Figure 1.10) are digital computers, generally used in multi-user systems. They have high processing speed and high storage capacity than the microcomputers. Minicomputers can support 4–200 users simultaneously. The users can access the minicomputer through their PCs or terminal. They are used for real-time applications in industries, research centers, etc. PDP 11, IBM (8000 series) are some of the widely used minicomputers.

Figure 1.10. Minicomputer


Mainframe Computers

Mainframe computers (Figure 1.11) are multi-user, multi-programming and high performance computers. They operate at a very high speed, have very large storage capacity and can handle the workload of many users. Mainframe computers are large and powerful systems generally used in centralized databases. The user accesses the mainframe computer via a terminal that may be a dumb terminal, an intelligent terminal or a PC. A dumb terminal cannot store data or do processing of its own. It has the input and output device only. An intelligent terminal has the input and output device, can do processing, but, cannot store data of its own. The dumb and the intelligent terminal use the processing power and the storage facility of the mainframe computer. Mainframe computers are used in organizations like banks or companies, where many people require frequent access to the same data. Some examples of mainframes are CDC 6600 and IBM ES000 series.

Figure 1.11. Mainframe computer



 Supercomputers

Supercomputers (Figure 1.12) are the fastest and the most expensive machines. They have high processing speed compared to other computers. The speed of a supercomputer is generally measured in FLOPS (FLoating point Operations Per Second). Some of the faster supercomputers can perform trillions of calculations per second. Supercomputers are built by interconnecting thousands of processors that can work in parallel.

Figure 1.12. Supercomputer



Supercomputers are used for highly calculation-intensive tasks, such as, weather forecasting, climate research (global warming), molecular research, biological research, nuclear research and aircraft design. They are also used in major universities, military agencies and scientific research laboratories. Some examples of supercomputers are IBM Roadrunner, IBM Blue gene and Intel ASCI red. PARAM is a series of supercomputer assembled in India by C-DAC (Center for Development of Advanced Computing), in Pune. PARAM Padma is the latest machine in this series. The peak computing power of PARAM Padma is 1 Tera FLOP (TFLOP).

COMPUTER HISTORY AND GENERATIONS

First Generation (1940-1956) Vacuum Tubes

The first computers used vacuum tubes for circuitry and magnetic drums for memory, and were often enormous, taking up entire rooms. They were very expensive to operate and in addition to using a great deal of electricity, generated a lot of heat, which was often the cause of malfunctions.
First generation computers relied on machine language, the lowest-level programming language understood by computers, to perform operations, and they could only solve one problem at a time. Input was based on punched cards and paper tape, and output was displayed on printouts.
The UNIVAC and ENIAC computers are examples of first-generation computing devices. The UNIVAC was the first commercial computer delivered to a business client, the U.S. Census Bureau in 1951.

Second Generation (1956-1963) Transistors

Transistors replaced vacuum tubes and ushered in the second generation of computers. The transistor was invented in 1947 but did not see widespread use in computers until the late 1950s. The transistor was far superior to the vacuum tube, allowing computers to become smaller, faster, cheaper, more energy-efficient and more reliable than their first-generation predecessors. Though the transistor still generated a great deal of heat that subjected the computer to damage, it was a vast improvement over the vacuum tube. Second-generation computers still relied on punched cards for input and printouts for output.
Second-generation computers moved from cryptic binary machine language to symbolic, or assembly, languages, which allowed programmers to specify instructions in words. High-level programming languages were also being developed at this time, such as early versions of COBOL and FORTRAN. These were also the first computers that stored their instructions in their memory, which moved from a magnetic drum to magnetic core technology.
The first computers of this generation were developed for the atomic energy industry.

Third Generation (1964-1971) Integrated Circuits

The development of the integrated circuit was the hallmark of the third generation of computers. Transistors were miniaturized and placed on silicon chips, called semiconductors, which drastically increased the speed and efficiency of computers.
Instead of punched cards and printouts, users interacted with third generation computers through keyboards and monitors and interfaced with an operating system, which allowed the device to run many different applications at one time with a central program that monitored the memory. Computers for the first time became accessible to a mass audience because they were smaller and cheaper than their predecessors.

Fourth Generation (1971-Present) Microprocessors

The microprocessor brought the fourth generation of computers, as thousands of integrated circuits were built onto a single silicon chip. What in the first generation filled an entire room could now fit in the palm of the hand. The Intel 4004 chip, developed in 1971, located all the components of the computer—from the central processing unit and memory to input/output controls—on a single chip.
In 1981 IBM introduced its first computer for the home user, and in 1984 Apple introduced the Macintosh. Microprocessors also moved out of the realm of desktop computers and into many areas of life as more and more everyday products began to use microprocessors.
As these small computers became more powerful, they could be linked together to form networks, which eventually led to the development of the Internet. Fourth generation computers also saw the development of GUIs, the mouse and handheld devices.

Fifth Generation (Present and Beyond) Artificial Intelligence

Fifth generation computing devices, based on artificial intelligence, are still in development, though there are some applications, such as voice recognition, that are being used today. The use of parallel processing and superconductors is helping to make artificial intelligence a reality. Quantum computation and molecular and nanotechnology will radically change the face of computers in years to come. The goal of fifth-generation computing is to develop devices that respond to natural language input and are capable of learning and self-organization.